Applying Functions
df.get(column_name).apply(function_name)
Applies a function of one parameter to every entry in the column.
- Input:
- function_name: a python function
- The function to apply to every entry in the column. This function should take a single parameter and return a value.
- Returns:
- A Series of the same size containing the results of the function application.
- Return Type:
- Series:
- The returned Series will have the same index as the input Series and will contain the transformed values based on the applied function.
The diagram below provides an example of applying a function to a column of a dataframe. For additional helpful visual guides, please visit the Diagrams site.
pets
Index | Species | Color | Weight | Age |
---|---|---|---|---|
0 | dog | black | 40 | 5 |
1 | cat | golden | 15 | 8 |
2 | cat | black | 20 | 9 |
3 | dog | white | 80 | 2 |
4 | dog | black | 25 | 0.5 |
5 | hamster | black | 1 | 3 |
6 | hamster | golden | 0.25 | 0.2 |
pets.get('Species').apply(is_dog)
- 0"True"
- 1"False"
- 2"False"
- 3"True"
- 4"True"
- 5"False"
- 6"False"
pets.get('Weight').apply(np.sqrt)
- 0"6.324555"
- 1"3.872983"
- 2"4.472136"
- 3"8.944272"
- 4"5.000000"
- 5"1.000000"
- 6"0.500000"
(Refer back to Writing Functions for categorize_animal.)
pets.get('ID').apply(categorize_animal)
- 0"Adult Normal"
- 1"Kitten Underweight"
- 2"Adult Overweight"
- 3"Adult Overweight"
- 4"Puppy Normal"
- 5"Senior Overweight"
- 6"Young Normal"
- 7"Kitten Normal"
Problems or suggestions about this page? Fill out our feedback form.